A brief introduction to

Reinforcement
Learning

Aadarsh Ram
Ibot, IITM

Before we start...

Useful resources to follow along:
e https://huggingface.co/learn/deep-rl-course/en/unitO/introduction/
e https://github.com/aadarshram/RL_basics/blob/main/NOTES.md (My concise notes)

Motivation: What is Reinforcement Learning?

e L earning by trial and error

e Receive feedback in form of rewards/punishments

e Goal: learn behaviour that maximizes expected cumulative reward
e Inspired by how animals learn.

Baby (Agent)

Reward bz
—> — o

State (Action)

Sitting Crawling Feeder

The RL Interaction Loop

e RL setup has:
o Agent: learner/decision-maker
o Environment: world it interacts with —
o Policy: “The brain” (5-> A)
e At each step t: statsi Efwar‘d jtctlon
o Agent observes state St
o Chooses action At Re.:
o Environment gives reward Rt+1
o Moves to next state St+1 with some
transition probability

The Reward Hypothesis

e “All goals can be framed as maximizing expected cumulative reward.”
e RL converts any task -» reward accumulation
e Discounted return:

SOME NOTES

e Observation vs. State:A policy maps observations - actions, not states -

actions.

e Discounting Future Rewards: In stochastic environ
uncertain - discounting reduces risk. Even in deter

settings, discounting ensures convergence of cumu

e Episodic vs. Continuing Tasks:

ments, futu

re rewards are

ministic, infinite-horizon
lative returns.

o Episodic tasks: interactions end at a terminal state » episode resets.
o Continuing tasks: no terminal state; agent interacts indefinitely.

SOME NOTES

e Exploration vs. Exploitation: At each step an agent must choose between:
o Exploit: choose the best-known action (max reward now).
o Explore: try new actions (discover better long-term strategies).
e Trade-off is essential; too much exploitation » local optima, too much
exploration - slow learning.
e Policy-based Vs Value-based methods: Learn mapping from state to actions
directly or learn state/state-action value functions.
e Deterministic vs. Stochastic Policies: Unigue action for each state or a
distribution of possibilities.
e Markov Property: State must contain all information necessary to predict
the next step. Can be the history of the past k observations if a single
observation is insufficient.

Markov Decision Processes (MDPs)

e RL is formally built on MDPs
e MDP assumptions:

o Markov property: next state
depends only on current state &
action

e Defined by tuple

(S,A,P,R,~)

MDP Components

e States S

e Actions A

e Transitions P(s'[s, a)
e Rewards R(s,a)

e Discount~y

Finite Horizon MDPs

e Episode ends after N steps
e Use Dynamic Programming (DP)
backwards in time
e Optimality principle:
o “Every tail of an optimal trajectory is
optimal.”

Dynamic Programming Algorithm

Vi(s) = maxE[r(s,a) + Vii1(s')]

a

Steps:

1. Initialize terminal reward
2. Fork=N-1to0:
e Compute V k(s)via Bellman backup

3. Recover optimal policy from argmax

Initialize: Vy(xn) = r(zn).

Fork=N-1,N—-2,...,0: Vi(xr) = max E[r(:}:k,a) + Vir1(@p+1) | a:;c,a} .

ac

Infinite Horizon MDPs

e Episodes don't end

e Use Bellman Optimality Equation:

V*(s) = max

a

e Solve using fixed-point iteration

i[r + V()]

Value Iteration

o |teratively apply Bellman operator:

Vit1(s) = max E[r + Vi (s')

o Converges to optimal value function

a

Policy Iteration

Two steps repeatedly:

1. Policy Evaluation: compute V'™

2. Policy Improvement:

' = arg max
cl

i[r +V7]

SOME NOTES

e Variants of Value and Policy iteration: Synchronous, Asynchronous
e RL algorithms are of 2 types- 1. Evaluation 2. Control. Evaluation

algorithms finc

for a better po

value function for given policy. Control algorithms solves

icy.

LEARNING FROM EXPERIENCE

Why Learn Instead of Compute?

e Inreal world:
o Transitions are unknown
o Reward is unknown before acting
o Instead of solving MDP, agent
samples trajectories and learns

shutterstock com - 1524562841

Stochastic Fixed Point Iterations

e Many RL algorithms rely on solving expected Bellman equations.

e Exact expectations are intractable in most environments.

e Solution: Replace expectations with single samples obtained through
Interaction.

e Under standard assumptions (step-size conditions, contraction, bounded
noise), these stochastic iterative algorithms converge to the optimal value or

policy.

Fixed-Point Iteration Template

To solve a fixed-point equation:

we Iterate:
rk+1 = Tk + ok (R(rE) — i)
where:
h(r) = Hr.
e The fixed point satisfies:

h(r*) =r*, orequivalently h(r) —r = 0.

Stochastic Version Template

e InRL, the operator H (expected Bellman backup) is unknown.

e |nstead, we use sample-based estimates:

e The update becomes:

Temporal Difference Learning (TD)

e Bootstraps using current estimate
e Update:

Vi(s)«< V(s)+a(r+~V(s) —V(s))
TD Error:

d=r+V(s')—V(s)

Apply template to Policy Evaluation (Value iteration)

Monte Carlo Policy Evaluation

e Uses full return until episode ends:
Vi(s) «+ V(s)+a(G—V(s))

e Unbiased, high variance
e TD = biased/low variance

e MC=unbiased/high variance

TD(A)

e Weighted mixture of all n-step returns
e (bootstrapping ¢ full MC)
e Controls bias-variance trade-off

VED(s) =V (s) +a(1-A) Y AR,

m

where each n-step return Is:

Rin] — Z’}’i T(Si,{li) -+ ’}/ﬂ

SOME

NOTES

e Alternative variants of TD and MCPE include updating on every visit of a
state or only on first visit for a given episode. While the former may yield

lower variance un

from the same episode.

e The TD algorithm is based on the Be
on the markov property to work. Thus, for non-Markovia

enviro
might

lman equation and

nments (which is more often t

orove better.

ne case), Monte Car

Ike latter it can be biased due to the dependent returns

nence heavily relies
n or partially markov
0 methods or TD(A)

THE CONTROL PROBLEM

Why Q-Values?

e Direct Bellman optimality cannot be used with unknown model
e |[ntroduce Q-values:

V(s) = maxQ(s,a)

a

Q-Bellman Equation

b

Q'(s,a) =1

r(s,a) + 'ymng*(s’jb) s,al,

Q-Learning

Q(s,0) « Q(s,0) +a r+ymaxQ(s'b) - Q(s,a))

o Off-policy
e Model-free

e Converges under certain assumptions

Q-learning is simply, TD method involving Q-values.

Algorithm

Initialize Q(s,a) arbitrarily
for episode =1 ... M:
set € = €_episode
observe initial state S
while S is not terminal:
choose A with e-greedy over Q
take action A and observe R, S'
Q(S,A) +=a* (R +y* max_a Q(S} a) - Q(S,A))
S=9§
return Q

Limitation

e Not scalable: huge tables for large/continuous spaces.

That’s all for today!

What’s next?

e Deep Q Learning

e Policy-gradient methods (REINFORCE)

e Actor-Critic methods

e Proximal Policy Optimization (brief)

e Code implementation: Random policy on
Frozen Lake using stable baselines

Deep Q Learning (DQN)

Why Deep Q-Learning?
e Tabular Q-learning does not scale to large or continuous state spaces.
e Need a function approximator to generalize across states.
e Deep neural networks provide a flexible mapping

(s) — Q(s,a;0) Va

Deep Q Learning (DQN)

e Replace Q-table with a neural network.

e |Input: state/observation

e Qutput: Q-value for each admissible action

e Goal: minimize TD error via gradient descent:

L=(y—Q(s,a;0))

y =7+ ymaxQ,(s’,a’)

Challenges

Catastrophic Forgetting

e Online updates cause the network to overwrite older knowledge.
e Solution: Experience Replay Buffer

e Store past transitions

e Train from diverse older experiences

e Repeat learning on useful transitions

Challenges

Experience Correlation

e Sequential transitions are highly correlated -» biased gradient updates.
e SGD assumes i.i.d. samples.
e Solution: Replay buffer with random minibatch sampling

o - decorrelates data

o - stabilizes learning

Challenges

The Moving Target Problem

e TD target uses the same network being updated - unstable fixed point.
e Every weight update shifts the target.
e Solution: Target Network

o Maintain copy Q06_hat

o Update it only every C steps

o Provides stable bootstrap target

Challenges

Overestimation Bias

e Max operator over noisy Q-values leads to optimistic value estimates.
e Amplified by neural networks.
e Solution:

o Use Target Network for stable target

o Or use Double DQN to reduce bias:

O

y =71+ vQ;(s',argmax Q4(s, a’))

DQN Algorithm

1. Initialize replay buffer DD, Q-network Qy, and target network Q; <— Qg.
2. For each episode:

e Select action using e-greedy

e Observe transition (s, a,r,s’)

e Storeinreplay buffer

e Sample minibatch

e Compute TD target and loss

e Gradient descent update on ¢

e Every Csteps: update target network

Policy-Based Methods

e Directly output action distribution
e Works for continuous actions

e Generally smoother learning

e Objective:

J(0) = E|G] Vod = *Z:Z‘Vg log 7g(az|s:) G:
t

Policy Gradient Theorem

REINFORCE Algorithm

e Sample trajectory
e Compute returns
e Update:

6 < 0+ aVglogmy(als)G

Actor-Critic Methods

e REINFORCE (pure policy gradient) suffers from:

e High variance » sample inefficient

e Slow learning due to Monte Carlo returns

e Actor-Critic solution:

e Use a Critic to estimate value function

e Use this estimate to bootstrap instead of relying purely on full-return Monte Carlo

Critic update:

Actor: Transition from environment:

* |nput: state S
’ * (Siy Aty Rev1, i)

« Qutput: action A;

. Target:
Critic:
 Input: (S, A¢) Riiq +79Q(Sti1, At i)
* Output: Q(S;, Ay) Critic update:

Actor Update:
P Aw =7 [Rf—l + TQ(Sf—hAf—l} — Q(an Af)] vu‘Q(ShAF)

A = aVylog my(a:|s:) Q(s:, a;)

Advantage Actor-Critic

Motivation:

» Using absolute Q(s, a) is noisy

« Better signal: relative improvement — Advantage function

Advantage:
A(si a:) = Q(8:,a:) — V()
Using
Q(s:,a:) = R(3:,a:) + vV (8:41)
Simplifies to:

A(Shﬂ-r] = 0; = iﬁr—l + TV(SI‘—I} - V(Si‘l

TD Error

Thus: Advantage = TD Error

Advantage Actor-Critic (A2C)

Actor Update:

.&‘H — ﬂ'vg].Ug ?TEJ([IIL Sf);‘i(ﬂf.l &f:}
Critic:

Predicts V'(s) using TD error as target.

QOutcome:

« Lower variance
» More stable learning

« Works with synchronous/asynchronous variants (A3C, etc.)

Proximal Policy Optimization (PPO)

Problem with vanilla PG / Actor—Critic:

* Asingle sample may misrepresent policy improvement

* Risk of large destructive policy updates

PPQO Goal:

+ Keep updates conservative
*» Encourage stable monotonic improvement

« Without the complexity of TRPO
Define probability ratio:

We[ﬂf|5r)
Mold (ﬂr |3f:}

Tt {ﬂ) —

REINFORCE update:
VoJ = E [Vglog mg(a:|s:) A:]
Replace log-prob with ratio:

r:(0)A;

Proximal Policy Optimization (PPO)

J(6) = E min(r;(0) A, clip(r:(8),1 —€,1 +€)A4;)]

» Prevents ratio from deviating too far
* Ensures stable updates

» Encourages improvement without collapse

Typically: € = 0.2

Summary

e Any Reinforcement Learning (RL) problem is fundamentally a sequential decision-
making task where the goal is to maximize the expected cumulative reward.

e Formally, RL is modeled using a Markov Decision Process (MDP), for which exact
mathematical solutions exist when the environment’s dynamics are known.

e When the model is unknown, we rely on learning-based methods that estimate
these quantities from sampled trajectories.

e Popular approaches include Q-Learning, DOQN, Actor-Critic methods, REINFORCE,
and PPO.

e |n essence: RL is about writing down the expected cumulative reward — and then
figuring out clever (and often mathematically messy) ways to maximize it, which
Is why all the “fancy algorithms” exist in the first place.

