
A brief introduction to

Reinforcement
Learning

Aadarsh Ram
Ibot, IITM

Before we start...

Useful resources to follow along:
https://huggingface.co/learn/deep-rl-course/en/unit0/introduction/
https://github.com/aadarshram/RL_basics/blob/main/NOTES.md (My concise notes)

Motivation: What is Reinforcement Learning?

Learning by trial and error
Receive feedback in form of rewards/punishments
Goal: learn behaviour that maximizes expected cumulative reward
Inspired by how animals learn.

The RL Interaction Loop

RL setup has:
Agent: learner/decision-maker
Environment: world it interacts with
Policy: “The brain” (S-> A)

At each step t:
Agent observes state St
Chooses action At
Environment gives reward Rt+1
Moves to next state St+1 with some
transition probability

The Reward Hypothesis

“All goals can be framed as maximizing expected cumulative reward.”
RL converts any task → reward accumulation
Discounted return:

SOME NOTES

Observation vs. State:A policy maps observations → actions, not states →
actions.
Discounting Future Rewards: In stochastic environments, future rewards are
uncertain → discounting reduces risk. Even in deterministic, infinite-horizon
settings, discounting ensures convergence of cumulative returns.
Episodic vs. Continuing Tasks:

Episodic tasks: interactions end at a terminal state → episode resets.
Continuing tasks: no terminal state; agent interacts indefinitely.

SOME NOTES

Exploration vs. Exploitation: At each step an agent must choose between:
Exploit: choose the best-known action (max reward now).
Explore: try new actions (discover better long-term strategies).

Trade-off is essential; too much exploitation → local optima, too much
exploration → slow learning.
Policy-based Vs Value-based methods: Learn mapping from state to actions
directly or learn state/state-action value functions.
Deterministic vs. Stochastic Policies: Unique action for each state or a
distribution of possibilities.
Markov Property: State must contain all information necessary to predict
the next step. Can be the history of the past k observations if a single
observation is insufficient.

RL is formally built on MDPs
MDP assumptions:

Markov property: next state
depends only on current state &
action

Defined by tuple

Markov Decision Processes (MDPs)

MDP Components

Finite Horizon MDPs

Episode ends after N steps
Use Dynamic Programming (DP)
backwards in time
Optimality principle:

“Every tail of an optimal trajectory is
optimal.”

Dynamic Programming Algorithm

Infinite Horizon MDPs

Value Iteration

Policy Iteration

SOME NOTES

Variants of Value and Policy iteration: Synchronous, Asynchronous
RL algorithms are of 2 types- 1. Evaluation 2. Control. Evaluation
algorithms find value function for given policy. Control algorithms solves
for a better policy.

LEARNING FROM EXPERIENCE

Why Learn Instead of Compute?

In real world:
Transitions are unknown
Reward is unknown before acting
Instead of solving MDP, agent
samples trajectories and learns

Stochastic Fixed Point Iterations

Many RL algorithms rely on solving expected Bellman equations.
Exact expectations are intractable in most environments.
Solution: Replace expectations with single samples obtained through
interaction.
Under standard assumptions (step-size conditions, contraction, bounded
noise), these stochastic iterative algorithms converge to the optimal value or
policy.

Fixed-Point Iteration Template

Stochastic Version Template

Temporal Difference Learning (TD)

Apply template to Policy Evaluation (Value iteration)

Monte Carlo Policy Evaluation

TD(λ)

Weighted mixture of all n-step returns
 (bootstrapping ↔ full MC)
Controls bias-variance trade-off

SOME NOTES

Alternative variants of TD and MCPE include updating on every visit of a
state or only on first visit for a given episode. While the former may yield
lower variance unlike latter it can be biased due to the dependent returns
from the same episode.
The TD algorithm is based on the Bellman equation and hence heavily relies
on the markov property to work. Thus, for non-Markovian or partially markov
environments (which is more often the case), Monte Carlo methods or TD(λ)
might prove better.

THE CONTROL PROBLEM

Why Q-Values?

Direct Bellman optimality cannot be used with unknown model
Introduce Q-values:

Q-Bellman Equation

Q-Learning

Q-learning is simply, TD method involving Q-values.

Algorithm

Initialize Q(s,a) arbitrarily
for episode = 1 ... M:
 set ε = ε_episode
 observe initial state S
 while S is not terminal:
 choose A with ε-greedy over Q
 take action A and observe R, S'
 Q(S,A) += α * (R + γ * max_a Q(S', a) - Q(S,A))
 S = S'
return Q

Limitation

Not scalable: huge tables for large/continuous spaces.

That’s all for today!

Deep Q Learning
Policy-gradient methods (REINFORCE)
Actor-Critic methods
Proximal Policy Optimization (brief)
Code implementation: Random policy on
Frozen Lake using stable baselines

What’s next?

Why Deep Q-Learning?
Tabular Q-learning does not scale to large or continuous state spaces.
Need a function approximator to generalize across states.
Deep neural networks provide a flexible mapping

Deep Q Learning (DQN)

Replace Q-table with a neural network.
Input: state/observation
Output: Q-value for each admissible action
Goal: minimize TD error via gradient descent:

Deep Q Learning (DQN)

Catastrophic Forgetting

Online updates cause the network to overwrite older knowledge.
Solution: Experience Replay Buffer
Store past transitions
Train from diverse older experiences
Repeat learning on useful transitions

Challenges

Experience Correlation

Sequential transitions are highly correlated → biased gradient updates.
SGD assumes i.i.d. samples.
Solution: Replay buffer with random minibatch sampling

 → decorrelates data
 → stabilizes learning

Challenges

The Moving Target Problem

TD target uses the same network being updated → unstable fixed point.
Every weight update shifts the target.
Solution: Target Network

Maintain copy Qθ_hat
Update it only every C steps
Provides stable bootstrap target

Challenges

Overestimation Bias

Max operator over noisy Q-values leads to optimistic value estimates.
Amplified by neural networks.
Solution:

Use Target Network for stable target
Or use Double DQN to reduce bias:

Challenges

DQN Algorithm

Policy-Based Methods

Directly output action distribution
Works for continuous actions
Generally smoother learning
Objective:

Policy Gradient Theorem

REINFORCE Algorithm

Sample trajectory
Compute returns
Update:

REINFORCE (pure policy gradient) suffers from:
High variance → sample inefficient
Slow learning due to Monte Carlo returns
Actor–Critic solution:
Use a Critic to estimate value function
Use this estimate to bootstrap instead of relying purely on full-return Monte Carlo

Actor-Critic Methods

Critic update:

Advantage Actor-Critic

Advantage Actor-Critic (A2C)

Proximal Policy Optimization (PPO)

Proximal Policy Optimization (PPO)

Summary

Any Reinforcement Learning (RL) problem is fundamentally a sequential decision-
making task where the goal is to maximize the expected cumulative reward.
 Formally, RL is modeled using a Markov Decision Process (MDP), for which exact
mathematical solutions exist when the environment’s dynamics are known.
 When the model is unknown, we rely on learning-based methods that estimate
these quantities from sampled trajectories.
Popular approaches include Q-Learning, DQN, Actor–Critic methods, REINFORCE,
and PPO.
In essence: RL is about writing down the expected cumulative reward — and then
figuring out clever (and often mathematically messy) ways to maximize it, which
is why all the “fancy algorithms” exist in the first place.

